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1  | INTRODUC TION

Allometry, which describes the relationships among an organism's 
physical or physiological attributes and its size, provides important 
functional information about how plants partition resources, in‐
cluding patterns that are fundamental to process‐based ecosystem 

models (Diaz et al., 2004; Jiang & Wang, 2017; Korner, 1995; Luo, 
Field, & Mooney, 1994; Montane et al., 2017). Plant species differ in 
the allometric relationships among tissue types (Poorter et al., 2015; 
Price & Weitz, 2012; Wright et al., 2004) and may also diverge in the 
degree to which allometry is influenced by environmental variables, 
such as climate. Adjustments of allometry in response to climate can 
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Abstract
1.	 Patterns of plant biomass partitioning are fundamental to estimates of primary 

productivity and ecosystem process rates. Allometric relationships between 
above‐ground plant biomass and non‐destructive measures of plant size, such as 
cover, volume or stem density are widely used in plant ecology. Such size‐biomass 
allometry is often assumed to be invariant for a given plant species, plant func‐
tional group or ecosystem type.

2.	 Allometric adjustment may be an important component of the short‐ or long‐term 
response of plants to abiotic conditions. We used 18 years of size‐biomass data 
describing of 85 plant species to investigate the sensitivity of allometry to precipi‐
tation, temperature or drought across two seasons and four ecosystems in central 
New Mexico, USA.

3.	 Size‐biomass allometry varied with climate in 65%–70% of plant species. Closely 
related plant species had similar sensitivities of allometry to natural spatiotempo‐
ral variation in precipitation, temperature or drought. Annuals were less sensitive 
than perennials, and forbs were less sensitive than grasses or shrubs. However, 
the differences associated with plant life history or functional group were not 
independent of plant evolutionary history, as supported by the application of phy‐
logenetically independent contrasts.

4.	 Our results demonstrate that many plant species adjust patterns in the partition‐
ing of above‐ground biomass under different climates and highlight the impor‐
tance of long‐term data for understanding functional differences among plant 
species.
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occur through phenotypic plasticity and through the process of nat‐
ural selection shifting the population to a new trait distribution (e.g. 
Conn, Pedmale, Chory, Stevens, & Navlakha, 2017; Franks, Weber, 
& Aitken, 2014; Niklas & Enquist, 2002; Vizcaino‐Palomar, Ibanez, 
Gonzalez‐Martinez, Zavala, & Alia, 2016). For example, plants sup‐
plemented with water can plastically increase traits, such as specific 
leaf area, or decrease traits, such as starch‐storage tissue in roots 
(von Arx, Archer, & Hughes, 2012). Plant allometry may evolve with 
changes in climatic niches across plant lineages (Vasseur et al., 2018), 
although in some cases, even strong selection cannot disrupt funda‐
mental allometries (Trejo, Rosell, & Olson, 2018).

Allometric relationships between above‐ground plant biomass 
and non‐destructive measures of plant size, such as cover, volume 
or stem density are widely used to estimate plant biomass (Byrne, 
Lauenroth, Adler, & Byrne, 2011; Eisfelder et al., 2017; Niklas & 
Enquist, 2001; Sala & Austin, 2000; Singh, Laurenroth, & Steinhorst, 
1975), which is an important metric of ecosystem productivity and 
carbon storage (Callahan, 1984). These size‐biomass allometries have 
been used to approximate productivity in ecosystems as diverse 
as forests (Chave et al., 2014; Roxburgh, Paul, Clifford, England, & 
Raison, 2015), coastal marshes (Lu et al., 2016), alpine meadows 
(Redjadj et al., 2012), boreal shrublands (He et al., 2018) and arid 
grasslands (Mowll et al., 2015). Non‐destructive estimates of bio‐
mass are particularly important in long‐term studies where measure‐
ments are repeated on the same individuals or plots (e.g. Elmendorf 
et al., 2012; Muldavin, Moore, Collins, Wetherill, & Lightfoot, 2008; 
Rudgers et al., 2014; Xia, Moore, Collins, & Muldavin, 2010) because 
destructive harvests would reduce data quantity or quality.

Despite the widespread use of size‐biomass allometry in plant 
ecology (Catchpole & Wheeler, 1992), this approach can fail to pro‐
vide accurate estimates of biomass. Allometry is often assumed to 
be invariant for a given plant species, plant functional group or eco‐
system type. Studies commonly apply allometric equations from sin‐
gle time points, locations or treatments to generalize plant biomass 
estimates – and diversity indices based on these estimates – across 
broad spatial or temporal scales. While invariant allometric scaling 
relationships have been detected (McBranch et al., 2019; Niklas & 
Enquist, 2001), partitioning to leaves/stems/roots can vary with 
the environment (Poorter et al., 2012; Reich et al., 2014; Schenk & 
Jackson, 2002). For example, substantial variability in volume‐bio‐
mass allometry has been detected across sites or biomes in several 
studies on trees (e.g. DeLucia, Maherali, & Carey, 2000; Forrester 
et al., 2017; Fortin, Couwenberghe, Perez, & Piedallu, 2018). Thus, 
assuming invariant size‐biomass allometry could over‐ or under‐ 
estimate plant biomass relative to true values.

In ecosystems with large year‐to‐year variability in climate, such as 
drylands, allometry may respond strongly to temperature, rainfall or 
soil moisture (Anfodillo, Petit, Sterck, Lechthaler, & Olson, 2016). For 
instance, a recent study revealed that dry years reduced the steep‐
ness of the relationship between community biomass and non‐de‐
structive proxies, such as the normalized difference vegetation index 
(NDVI) (Onodi et al., 2017). Meta‐analysis of 164 studies suggested 
that sensitivity of within‐plant organ allometry is common: drought 

experiments altered plant biomass partitioning ratios, favouring root 
over shoot biomass and altering ratios of reproductive to vegetative 
biomass (Eziz et al., 2017). Similarly, treatments such as competition 
(Yu & Gao, 2011) or nitrogen addition (Dziedek et al., 2017) can alter 
patterns of biomass partitioning (but see Bernacchi, Coleman, Bazzaz, 
& McConnaughay, 2000; Peng & Yang, 2016). While experimental ap‐
proaches are useful for detecting whether or not allometry is invari‐
ant, they do not capture the continuous variation in allometry that 
characterizes natural systems under variable climate regimes.

Adjustments of allometry may be important components of the 
short‐ or long‐term responses of plants to climate change (Bjorkman 
et al., 2018; Nicotra et al., 2010; Reich et al., 2014). Comparative 
studies on the sensitivity of allometry to climate can refine projec‐
tions of future plant biomass and associated ecosystem processes. 
For example, if the allometric relationship between plant biomass 
and a non‐destructive proxy takes a shallower slope when climate is 
hotter or drier, then using an invariant allometric equation will over‐
estimate plant biomass in a more arid future. Unresolved questions 
include the following: is the sensitivity of size‐biomass allometry to 
climate predictable from plant relatedness or by plant functional 
group or life history? And how much do plant species diverge in al‐
lometric sensitivity to different aspects of climate, such as tempera‐
ture versus precipitation?

Here, we used 18  years of plant species‐specific biomass data 
from the Sevilleta Long‐Term Ecological Research Program to in‐
vestigate the degree to which plant allometry was sensitive to spa‐
tiotemporal variation in precipitation, temperature or drought. Our 
dataset spanned 85 plant species, 24 plant families, three functional 
groups (forb, grass, shrub), two seasons (spring, fall) and four dryland 
ecosystems in central New Mexico, USA. Investigating size‐biomass 
allometry in drylands helps to fill a gap in datasets that are currently 
richer for mesic terrestrial ecosystems (e.g. Poorter et al., 2012). Our 
approach improves upon recent work (Onodi et al., 2017) by compar‐
ing sensitivities among plant species and functional groups as well 
as examining the relative importance of alternative climate variables.

We used allometric equations relating harvested above‐ground 
plant biomass to non‐destructive measurements of plant species 
cover and volume to address the following questions across four 
dryland ecosystems: (1) Is it common for allometry to be sensitive  to 
climate? For 85 plant species, we compared the goodness of fit of 
statistical models in which allometry was invariant with climate 
against models in which allometry varied with temperature, pre‐
cipitation or drought. (2) Is the sensitivity of allometry to climate pre‐
dictable from plant phylogenetic relatedness, functional group identity, 
life history strategy, or photosynthetic pathway? We predicted that 
herbaceous plants would have higher potential to adjust allometry 
than woody species and that closely related species would resemble 
one another more than distantly related species (see also Poorter 
et al., 2012). We expected that annuals would have greater oppor‐
tunity than perennials to accrue fitness benefits from sensitivity to 
climate during a single year. In addition, annual plants may respond 
faster to climate than perennials through evolutionary changes in 
allometry (e.g. Vasseur et al., 2018), as rates of molecular evolution 
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are faster in short‐lived herbaceous plants than in long‐lived woody 
species (Smith & Donoghue, 2008). Alternatively, in perennials, the 
process of natural selection is expected to favour trait combinations 
that increase long‐term survival over diverse climate years, and 
these traits may include high plasticity in allometry. We predicted 
that plants with drought‐adapted photosynthetic pathways (C4/
CAM) would have allometries that were less sensitive to climate 
than C3 plant species, although a global analysis did not find such 
differences for biomass partitioning among plant organs within in‐
dividual plants (Poorter et al., 2012). For only the plant species in 
which allometry was sensitive to climate, we asked (3) To which cli‐
mate variables is allometry most sensitive: temperature, precipitation, or 
drought? We anticipated that a majority of species would be sensitive 
to drought indices that combine the stressors of heat and low rain‐
fall (e.g. Rudgers et al., 2018). Finally, we applied allometries to non‐ 
destructive cover and volume estimates in four ecosystems to evalu‐
ate (4) How much does climate‐sensitive allometry influence estimates of  
aboveground primary production?

2  | MATERIAL S AND METHODS

2.1 | Study site

The Sevilleta National Wildlife Refuge (SNWR), New Mexico, spans 
transition zones from Chihuahuan Desert vegetation to the south‐
west, Great Plains grassland to the northeast, Colorado Plateau veg‐
etation to the northwest, and piñon‐juniper dominated woodlands 
at high elevations. At low elevations, woodlands transition to juni‐
per savannas, then to grasslands. We collected size‐biomass data in 
four ecosystem types: Plains grassland (34.3348, −106.631, eleva‐
tion 1,671  m), Chihuahuan Desert grassland (34.3331, −106.737, 
elevation 1,615  m), desert shrubland (34.3331, −106.737, eleva‐
tion 1,651  m) and piñon‐juniper woodland understorey (34.368, 
−106.535, elevation 1,976 m), thereby enabling the detection of sen‐
sitivity of allometry to variation in climate across space.

2.2 | Plant allometry data

For each plant species, we selected ~10−30 individuals that spanned 
the natural range of variation in plant cover in each season and year 
of study. We estimated plant cover and height with a non‐destruc‐
tive method within 1 m × 1 m quadrats divided into 100 grid squares 
(10  cm  ×  10  cm) (Muldavin et al., 2008). Every year for 18  years, 
volume (visual % cover multiplied by average height to the nearest 
cm) was recorded on individual plants at peak biomass (September/
October) and in spring (April/May) to capture seasonal differences in 
size and include species that grew during only one season. Spring and 
fall biomass can be decoupled because heavy winter rains, which feed 
spring annuals, can occur independently of summer monsoons. So, 
it is important to consider the two seasons separately, regardless of 
plant life history. Above‐ground biomass was collected for each indi‐
vidual, returned the laboratory, sorted into live or dead components, 
dried for 4 days at 60°C, and then weighed to the nearest 0.01 g. 

Additional details are provided in the data package and r script, avail‐
able via the Environmental Data Initiative (see Data Accessibility).

For each plant species, we recorded functional group, life‐history 
strategy and photosynthetic pathway (C3, C4, CAM) from the USDA 
Plants Database and linked resources (USDA & NRCS, 2018). We rec‐
ognized three functional groups: grasses (22 species), forbs (herbaceous 
non‐grasses; 53 species) and shrubs (10 species). We analysed two life‐
history groups: annual (23 species) or perennial (62 species). The few 
biennials were binned with annuals, and species with flexible life his‐
tories (annual to perennial) were lumped with perennials. Only 3 of the 
85 species were CAM, so CAM and C4 were combined (36 species) to 
reflect similarity in water conservation relative to C3 (49 species).

2.3 | Climate data

Climate variables were recorded at four long‐term meteorological 
stations located in the Great Plains grassland (34.3348, −106.631), 
the  ecotone between Great Plains and Chihuahuan Desert grass‐
land (34.3592, −106.691), the ecotone between Chihuahuan Desert 
grassland and shrubland (34.3331, −106.737), and in the piñon‐ju‐
niper woodland (34.368, −106.535). Distances from each site to 
the nearest weather station ranged from 50 m to 450 m. We used 
meteorological data during 1999–2017 for air temperature, relative 
humidity and precipitation. Hourly climate data were summarized to 
daily values. Then, missing data for any given day (e.g. temporary 
equipment failure) were gap‐filled using daily data from the geo‐
graphically nearest LTER met station.

For each plant species, we evaluated the relative importance 
of three climate variables: temperature, precipitation and drought. 
For each climate variable, we used data over the prior 6 months of 
the growing season for spring (ending 31 May) or fall (ending 30 
October). Growing degree days (GDD) had a base temperature of 
0°C to obtain a 6‐month average of daily GDD values for spring or 
fall. Precipitation was summed over 6  months. Because precipita‐
tion alone does not override the strong effect of temperature on 
water availability in drylands (Williams et al., 2013), we calculated 
the SPEI (Standardized Precipitation Evapotranspiration Index) to 
incorporate potential evapotranspiration using the Thornthwaite 
method (Vicente‐Serrano, Begueria, & Lopez‐Moreno, 2010). 
The Standardized Precipitation Evapotranspiration Index was inte‐
grated over 6 months using methods in Vicente‐Serrano et al. (2010) 
on the daily, gap‐filled climate data across all sites. Negative SPEI val‐
ues indicate more arid conditions. Each climate variable was scaled 
to mean = 0 and standard deviation = 1.

2.4 | Climate sensitivity of allometry for each 
plant species

For each species and season, we regressed above‐ground biomass 
on plant cover or volume with the intercept forced through the ori‐
gin (lm <stats>, R Core Team, 2018) following our prior methods in 
Muldavin et al. (2008). Then, we used model selection procedures 
(AICc <MuMIn> Bartoń, 2018) to evaluate the relative importance of 
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four candidate models described in Table 1 (Anderson, 2008). Plant 
species were included if allometry data were available for at least 
three spatiotemporal instances of climate (years × geographic sites; 
mean = 6, max = 35 for common species; Table S1).

2.5 | Effect size

The interaction term (I) in each climate‐variant model (e.g. 
Size  ×  Precipitation, Table 1) estimated the magnitude of sensitiv‐
ity of allometry to climate. For example, a positive estimate of (I) for 
Plant cover × Precipitation indicated that plants grew denser per unit 
cover with more precipitation (Figure 1). Conversely, a negative (I) indi‐
cated that plants grew sparser with more precipitation. We combined 
model selection results across plant species  ×  season combinations 
(N = 121, Supporting Information). We used vote counting, phylogenetic 
comparative techniques (phylogenetically independent contrasts, PICs, 
Garland, Harvey, & Ives, 1992; phylogenetic logistic regression, Ives & 
Garland, 2014), and meta‐analysis to address the following questions.

1.	 Is it common for allometry to be sensitive  to climate?

We scored each plant species as ‘climate‐sensitive’ if the 
Invariant model (Table 1) was worse (ΔAICc  >  2) than the best 
climate‐variant model and if the (I) for Size × Climate was signifi‐
cantly different from zero (p < .05). If the climate‐insensitive model 
essentially tied the best climate‐sensitive model (ΔAICc  ≤  2), we 
conservatively scored it as ‘climate‐insensitive’, regardless of the p‐
value. We tallied cases in which allometry was sensitive to a climate 
variable. We also built generalized linear models (glmer, Pinheiro, 
Bates, DebRoy, & Sarkar, 2016) with a binomial distribution of in‐
sensitive to climate (=0) or sensitive to climate (=1) to test whether 
sensitivity differed by season; models for species observed in both 
seasons included plant species identity as a random intercept.

2.	 Is the sensitivity of allometry to climate predictable from plant 
phylogenetic relatedness, functional group identity, life history 
strategy, or photosynthetic pathway?

Phylogenetic signal: To assess the degree to which closely related spe‐
cies shared similar sensitivities to climate, we pruned the time‐calibrated 

31,383‐species Qian and Jin (2016) plant phylogeny to include focal 
taxa (details in Supporting Information). For the occurrence of sensitiv‐
ity to climate (invariant vs. sensitive), we calculated phylogenetic signal 
as Ives' s2 (Ives & Garland, 2014; binaryPGLMM <ape> Paradis & Schliep, 
2018). For the magnitude of sensitivity, (I) (Table 1), we calculated phy‐
logenetic signal as Pagel's λ (Pagel, 1999; phylosig <phytools> Revell, 
2012). We used only cover‐biomass models so that (I) was directly com‐
parable across plant species (Supporting Information).

TA B L E  1   Candidate models for evaluating the sensitivity of 
allometry to climate

Model Specification

Invariant Biomass ~ Size

Growing de‐
gree days

Biomass ~ Size + Growing Degree Days + 
Size × Growing Degree Days

Precipitation Biomass ~ Size + Precipitation + Size ×  
Precipitation

Drought Biomass ~ Size + SPEI + Size × SPEI

Note: For each combination of plant species and season (spring or fall), 
we built four models in which Size = Plant Cover (visually estimated %) 
and four models in which Size = Plant Volume (% cover × height).

F I G U R E  1   Size‐biomass allometry that is sensitive to climate. 
(a) Hypothetical example in which plants become denser (steeper 
slope) in wet, cool years (blue line) relative to normal (average) 
climate years (grey line) and dry, hot years (red line). (b) Size‐
biomass allometry for the C4 annual forb, Chamaesyce serrula 
(Euphorbiaceae), in fall; plants became denser with greater 
precipitation (PPT). (c) Size‐biomass allometry for the C4 perennial 
grass, Muhlenbergia arenicola (Poaceae); in spring, plants became less 
dense under hotter conditions based on growing degree days (GDD)

(a)

(b)

(c)
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2.6 | Phylogenetic logistic regression and 
phylogenetically independent contrasts

To account for non‐independence of species due to shared evolution‐
ary history (Garland et al., 1992), we used phylogenetic comparative 
techniques. To ask whether the occurrence of sensitivity (invariant vs. 
sensitive) was predicted by functional group identity, life history or pho‐
tosynthetic pathway, we used phylogenetic logistic regression (Ives & 
Garland, 2014; binaryPGLMM <ape> Paradis & Schliep, 2018). For analy‐
ses on continuous sensitivity (I), we obtained PICs using package <ape> 
(Paradis & Schliep, 2018) with general linear models (described above). 
In the PICs, functional group was coded as binary, where 0 = herba‐
ceous (grasses and forbs) or 1 = woody (shrubs) because grasses form a 
single clade. Analyses used original branch lengths in millions of years, 
but alternative analyses assuming all = 1 or Grafen branch lengths pro‐
duced qualitatively similar results (results not shown).

2.7 | Functional group identity, life‐history 
strategy, or photosynthetic pathway

We used generalized linear models with a binomial response (in‐
variant vs. sensitive) and the fixed effects of season and one of the 
following predictors: functional group, life‐history strategy or pho‐
tosynthetic pathway. We evaluated the importance of the predic‐
tors with a log‐likelihood ratio test that compared model fit against 
a null model. Models included plant species identity as a random ef‐
fect to account for plant species observed in both seasons (nested 
within life history, functional group or photosynthetic pathway). 
Models were also constructed separately for each season without 
a random effect of plant species, which returned similar results.

3.	To which climate variables was allometry most sensitive: temperature, 
precipitation, or drought?

For the plant species × season combinations in which a climate‐sen‐
sitive model (Table 1) was the best fit (N = 93 of 121), we conducted 
meta‐analysis (Koricheva et al., 2013) separately for spring versus 
fall observations (rma.mv <metafor> Viechtbauer, 2010). The re‐
sponse was the effect size (I) from the best climate‐specific cover 
model, weighted by the sample size, giving larger weights to spe‐
cies sampled more intensively. Models included the fixed effects 
of climate predictor (GDD, precipitation, drought) and either plant 
functional group, life‐history strategy or photosynthetic pathway, 
plus the interaction. We assessed the magnitude of sensitivity using 
likelihood ratio chi‐squared tests against null models that either did 
not include the predictor or did not include the interaction term.

4.	How much does climate‐sensitive allometry influence estimates of 
aboveground primary production?

We applied size‐biomass allometries to non‐destructive cover and vol‐
ume estimates for plant species occurring in 1 m × 1 m quadrats in each 
of the four ecosystems (N = 22–100 quadrats per ecosystem). We then 

compared the estimate of total plant above‐ground biomass (summed 
over all species present in the quadrat) between the best fit model for 
each species, which accounted for species that were climate‐sensi‐
tive, or a climate‐invariant model for each species, which fit a single 
size‐biomass regression through harvest data from all years × sites of 
collection. Our climate‐invariant prediction method is less conserva‐
tive than the typical approach of using allometric relationships from 
a single time point, because it does use data from all years of collec‐
tion, which inherently captures a broader range of possible allometries. 
Because ecosystems had different time series, we tested for significant 
differences between predicted biomass from climate‐sensitive ver‐
sus climate‐insensitive methods using a general linear mixed‐effects 
model for each ecosystem type that included the factors of year (as 
categorical), allometry method (sensitive vs. insensitive) as well as their 
interaction along with the random, repeated factor of quadrat identity 
(lmer, lm4 package, R Core Team, 2018).

3  | RESULTS

1.	 Is it common for allometry to be sensitive  to climate?

Of the size‐biomass allometries for 121 plant species × season combi‐
nations, 70% varied with climate (65% minimum, after correcting for a 
5% false detection rate). Plant size‐biomass allometries were similarly 
likely to be sensitive to climate in the fall season (79% of 76 cases, 74% 
corrected; 3.8 species were expected by chance alone) as in the spring 
(71% of 45 cases, 66% corrected) (log‐likelihood ratio X2 = 1.1, p = .29). 
This similarity held when we included only 36 plant species sampled in 
both spring and fall (X2 = 1.8, p = .18). In fall, 30 of these 36 species had 
climate‐sensitive allometries; the null expectation was 1.8 species signif‐
icant by chance alone. In spring, 26 of 36 species were climate‐sensitive.

Generally, plant cover was better than or equivalent to plant vol‐
ume as a predictor of live biomass in our set of 85 dryland plant species. 
Cover was as good as or better than volume for 76% of total cases and 

TA B L E  2   Phylogenetic signal in sensitivity of cover‐biomass 
plant allometry to three climate variables

Climate variable Season

Magnitude of sensitivity

Pagel's λ P N

Drought Fall 0.868 .007 76

Precipitation Fall 0.954 <.001 76

Growing degree 
days

Fall 0.783 <.001 76

Drought Spring <0.001 1.000 45

Precipitation Spring 0.999 <.001 45

Growing degree 
days

Spring 0.985 <.001 45

Note: Magnitude of sensitivity was the parameter estimate for the 
interaction term of plant cover × the climate variable. See Methods: 
Phylogenetic signal for additional details. Separate analyses were 
conducted for each climate variable in spring and in fall. N = number of 
plant species in the analysis.
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for 83% of grasses, 75% of forbs and 63% of shrubs. Of just the cover‐
biomass allometries, ~76% were sensitive to climate (92 of 121 cases).

2.	 Is the sensitivity of allometry to climate predictable from plant 
phylogenetic relatedness, functional group identity, life history 
strategy, or photosynthetic pathway?

The magnitude of sensitivity of allometry to climate had strong 
phylogenetic signal (Table 2, Figure 2) in five of six analyses. The 
exception was drought in spring, for which sensitivity was not 

predictable from plant relatedness. Phylogenetic signal was stron‐
gest for sensitivity to precipitation in fall‐collected species and 
weakest for sensitivity to temperature (GDDs) in fall‐collected spe‐
cies (Figure 2a). Occurrence of sensitivity (insensitive vs. sensitive) 
had strong phylogenetic signal for fall species (s2 = 3.85, p < .001, 
N = 76) but not spring species (s2 = 0.00, p = .50, N = 45).

Grasses and shrubs were more likely than forbs to have size‐bio‐
mass allometry that was sensitive to climate (Figure 3a, X2 = 12.0, 
p = .0025). Functional groups differed in allometry more strongly in 

F I G U R E  2   Plant species‐specific sensitivities of biomass allometry to climate variables plotted against the phylogeny derived from Qian 
and Jin (2016). Each colour shows the magnitude and direction of sensitivity to climate (I) for the outer ring = temperature (GDD); middle 
ring = SPEI drought index; inner ring = precipitation (PPT). A colour was not plotted for species with climate‐insensitive allometry. (a) Fall 
species (N = 76); (b) Spring species (N = 45). Note that sensitivity to SPEI of the spring species, Artemesia ludoviciana, was very large (−23.4) 
and was not plotted to improve readability of the remaining data
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fall than in spring (season × functional group, X2 = 8.4, p = .0152). In 
fall, all shrub and grass species had cover‐biomass allometries that 
were sensitive to climate, while 64% of forb species were climate 
sensitive. In spring, 83% of shrubs were sensitive to climate, while 
73% of grasses and 67% of forb species were sensitive. Results were 
consistent when we selected the best allometry from among both 
cover and volume models (functional group, p  <  .0228). However, 
phylogenetic logistic regression did not detect relationships be‐
tween plant functional group and the occurrence of sensitivity (fall, 
p > .99; spring, p > .48). Phylogenetically independent contrasts to 
detect potential relationships between the magnitude of sensitiv‐
ity and functional group showed no significant difference between 
functional groups (Fall, F1,74  =  0.04, p  >  .83; Spring, F1,43  =  0.122, 
p > .72).

Perennial plants were more likely than annuals to have climate‐
sensitive allometries (Figure 3b, life history, X2 = 3.8, p = .0500). In 
fall, 84% of perennials and 65% of annuals were climate‐sensitive. 
In spring, 73% of perennials were sensitive to climate, but annuals 
were poorly represented (2 of 4 annual species were sensitive). 
Life‐history differences in sensitivity did not differ between seasons 
(season ×  life history, X2 = 0.0, p >  .98). Results were qualitatively 
similar when we selected the best allometry from both cover‐ and 
volume‐biomass relationships but were non‐significant (life history, 
p = .24). Phylogenetic logistic regression did not detect relationships 
between plant life history and the occurrence of sensitivity (fall, 
p >  .26; spring, p >  .34). In PIC analyses, the magnitude of sensitiv‐
ity did not differ between annuals and perennials (Fall, F1,74 = 1.148, 
p > .28; Spring, F1,43 = 0.001, p > .97).

Ephedra_to
rreyana

Stipa_
neom

exican
a

Elym
us_e

lymo
ides

Aris
tida
_pu
rpu
rea

Ari
stid
a_
div
ari
ca
ta

H
ila
ria
_j
am
es
ii

suilofiverb_nogoporelc
S

Mu
hle
nb
erg
ia_
tor
rey
i

M
uh
len
be
rg
ia_
ar
en
ico
la

Ly
cu
ru
s_
ph
le
oi
de
s

M
uh
le
nb
er
gi
a_
pa
uc
ifl
or
a

C
irsium

_neom
exicanum

Gutierrezia_sarothrae

Chaetopappa_ericoides

Artem
isia_ludoviciana

Bahia_absinthifolia

ir
el

dn
ef

_n
o

me
ts

ne
P Plantago_patagonica

Erigeron_flagellaris

Hymenopappus_filifolius

Machaeranthera_pinnatifida

Senecio_flaccidus

Zinnia_grandiflora

Erioneuron_pulchellum

C
hondrosum

_gracile

Chondrosum
_eriopodum

Chondrosum_hirsutum

Bouteloua_curtipendula

Rhus_tr
ilobata

Euphorbia_lataEuphorbia_fendleri

Op
un
tia
_p
ha
ea
ca
nth
a

So
la
nu
m
_e
la
ea
gn
ifo
liu
m

G
la
nd
ul
ar
ia
_b
ip
in
na
tif
id
a

Astragalus_missouriensis

Astragalus_nuttallianus

C
ry
pt
an
th
a_
cr
as
si
se
pa
la

Dalea_nana

Er
iog
on
um
_w
rig
hti
i

La
pp
ul
a_
oc
cid
en
ta
lis

Physaria_fendleri

Physaria_pinetorum

Sph
aer
alce

a_c
occ
inea

Spha
eralc

ea_le
ptoph

ylla

Sp
hae
ralc
ea_
wri
ght
ii

–5

0

5

(b)  Spring species

F I G U R E  2   Continued



     |  2297Functional EcologyRUDGERS et al.

Plants with water‐conservative photosynthetic pathways (C4/
CAM) were somewhat more likely than C3 plants to adjust allom‐
etry in response to climate (Figure 3c, X2 = 3.1, p = .0769). Season 
did not interact with photosynthetic pathway to influence sensi‐
tivity (X2  =  0.8, p  =  .36). In fall, 89% of C4/CAM species had al‐
lometries that were sensitive to climate, but 71% of C3 species 
were sensitive. In spring, 75% of C4/CAM species and 69% of C3 
species had climate‐sensitive allometries, respectively. Selecting 
the best allometry from cover or volume models returned similar 
results. Phylogenetic logistic regression did not detect differences 
in the occurrence of sensitivity for plants with different photosyn‐
thetic pathways (fall, p > .34; spring, p > .66), nor did phylogeneti‐
cally independent contrasts detect an influence of photosynthetic 
pathway on the magnitude of sensitivity (Fall, F1,74 = 0.030, p > .86; 
Spring, F1,43 = 0.044, p > .83).

3.	To which climate variables is allometry most sensitive: temperature, 
precipitation, or drought?

Of the 92 plant species  ×  season combinations for which including 
climate sensitivity improved the estimate of size‐biomass allometry, 
similar percentages of species were most sensitive to each of the 
three climate variables. In fall, 26% of species were most sensitive 
to drought, 28% to temperature as GDDs, and 25% to precipitation. 
In spring, 24% of species were most sensitive to temperature or pre‐
cipitation, and 22% to drought. Plant species differed in the climate 
variable to which they were most sensitive, and meta‐analysis revealed 
that the magnitude of the influence of different climate variables on 
allometry differed between spring and fall seasons (climate × season, 
X2 = 1,455.8, p < .0001; Figure 4).

In the fall, 21 plant species had allometries that, on average, in‐
vested less biomass per unit cover under more arid climates, indi‐
cated by a more negative SPEI effect and supported by significantly 
positive interaction effect sizes (I) between SPEI and plant cover 
(Figure 4a). A different set of 18 species were most sensitive to pre‐
cipitation in fall (e.g. Figure 1b), but the average effect size for this 
group did not significantly differ from zero (Figure 4b). A further set 
of 21 species invested less biomass per unit cover under warmer 
temperatures (as in example, Figure 1b), as indicated by the negative 
interaction effect size (I) for fall GDD (Figure 4c). In fall, woody and 
herbaceous plants that were sensitive to climate had similar average 
effect sizes for sensitivity (p > .29; herbaceous × season, X2 = 197.8, 
p < .0001), as did C4/CAM versus C3 (p > .99). In both seasons, the 
magnitude of sensitivity did not differ between annuals and perenni‐
als (X2 = 1.44, p > .23).

In the spring, plant allometry was significantly sensitive to 
drought and precipitation  (Figure 4d,e; i.e. the magnitude of I was 
significantly greater than zero) with 9 plant species investing less 
biomass per unit cover under drier SPEI (Figure 4d) and 10 species 
that either increased or decreased biomass per unit cover with in‐
creasing spring precipitation (Figure 4e). Temperature did not sub‐
stantially alter plant allometry in the spring (Figures 4f and 2b, 95% 
confidence intervals for (I) overlapped zero). In spring, the magnitude 

F I G U R E  3   Percentage of plant taxa for which cover‐biomass 
allometry was sensitive to climate, separated by season (fall = open 
bars, spring = filled bars) and for (a) plant functional groups, (b) 
plant life history, or (c) plant photosynthetic pathway. Different 
letters indicate that groups were statistically significantly different 
in pairwise contrasts within a generalized linear model for each 
season. Numbers on each bar indicate the number of plant species 
in each group

(a)

(b)

(c)
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of climate sensitivity (for sensitive species only) was stronger for 
woody shrubs (mean [95% CI], 2.14 [0.77–3.51]) than herbaceous 
grasses/forbs (1.1 [−0.29 to 2.44]; p  =  .017). Also, the magnitude 
of sensitivity was larger for the C4/CAM plant species than for C3 
plants (p  =  .002; photosynthetic pathway  ×  season, X2  =  1,087.2, 
p < .0001). C4/CAM plants were most different from C3 in their sen‐
sitivity to precipitation (photosynthetic pathway × climate variable, 
X2 = 489.0, p < .0001; Figure 4b,e).

4.	How much does climate‐sensitive allometry influence estimates of 
aboveground primary production?

Accounting for climate sensitivity of allometry increased the pre‐
cision of above‐ground primary production estimates in some 
ecosystems (Figure 5). The strongest increases occurred in spring 
(Figure 5a), when accounting for climate sensitivity in allometry 
significantly changed total biomass estimates in all ecosystems 
(allometry method X2 range 8.1–780.9, p <  .0001; method × year 
X2 range 5.6–512.3, p <  .0001) except for the understorey com‐
munity of piñon‐juniper woodlands (p >  .18). In fall, climate sen‐
sitivity significantly changed total biomass estimates for desert 
shrubland (Figure 5b, allometry method X2  =  22.5, p  <  .0001; 
method × year X2 = 25.1, p = .12) and desert grassland (allometry 
method X2 = 26.6, p < .0001; method × year X2 = 62.0, p < .0001) 
but was non‐significant in plains grassland (p > .5) and woodland 
(p > .7).

4  | DISCUSSION

A majority of dryland plant species from annual forbs to perennial 
grasses and dominant shrubs exhibited changes in cover‐biomass 
allometry with natural spatiotemporal variation in climate. Among 
the 85 plant species, ~70% (conservatively, 65%) had allometries that 
were significantly climate‐sensitive. The large percentage of species 
with climate‐sensitive allometry suggests that one‐time measures of 
allometry can be inaccurate in long‐term or cross‐site studies that 
extrapolate to years or sites in which size‐biomass relationships 
were not directly measured. Furthermore, application of climate‐
sensitive allometries to estimate above‐ground primary production 
can substantially alter productivity estimates; in ecosystems studied 
here, this improvement was strongest in spring seasons and in grass‐
land rather than woody ecosystems (Figure 5).

4.1 | Phylogenetic signal in sensitivity of allometry 
to climate

Evidence for phylogenetic signal in allometric sensitivity to climate 
was strong, indicating that closely related species are likely to 
have similar changes in cover‐biomass relationships with changes 
in climate. From a practical perspective, the detection of phyloge‐
netic signal means that the sensitivity of allometry for unstudied 
species may be predictable using plant phylogenies such as Qian 
and Jin (2016). This application could be useful for investigating 

F I G U R E  4   The magnitude and 
direction of sensitivity to climate (I) for 
species with cover‐biomass allometry 
that was sensitive to climate, graphed 
separately for each season: fall (a‐c) or 
spring (d‐f) and for the SPEI drought index 
(a, d), precipitation (PPT) (b, e) or growing 
degree days (GDD) (c, f). Open symbols 
show mean effect size (I) ± 95% CI across 
species in each group. Filled symbols 
show individual effect sizes (I) for each 
species. In plot (d), Artemesia ludoviciana 
was excluded to improve the ability to 
visualize the other species, due to its large 
effect size (I = −23.4)

(a)

(b)

(c)

(d)

(e)

(f)
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the accuracy of cases in which a single estimate of allometry was 
used to predict biomass across different climates, years or sites. 
The wide range of observed sensitivities in our dataset means that, 
in practice, size‐biomass allometry should be measured under dif‐
ferent climate conditions for individual species whenever possible. 
However, because species were differentially sensitive to differ‐
ent climate variables (e.g. temperature vs. precipitation), there is 
not a simple solution to capturing the climate sensitivity of allom‐
etry across a variety of plant species. Similar to our results, close 
relatives also share patterns of organ‐specific biomass partitioning 
(e.g. partitioning of total biomass among roots, leaves or stems, 
McCarthy, Enquist, & Kerkhoff, 2007). Phylogenetic signal may 
indicate that physiological mechanisms to adjust allometry have 
diverged across plant lineages. However, our result contrasts with 
global analyses of organ‐specific allometry, where within‐plant par‐
titioning of biomass among roots, stems or leaves tracked plant 
functional group more than phylogeny (Poorter et al., 2015; see 
also Ackerly & Donoghue, 1998), suggesting the explanatory power 

of plant relatedness may differ between whole‐plant and tissue‐
specific scales.

4.2 | Potential mechanisms underlying species 
differences in allometric sensitivities

Our results raise new hypotheses about why the sensitivity of plant 
size‐biomass allometry varies with plant phylogeny, traits or life‐his‐
tory strategies. First, in contrast to our initial prediction, annuals and 
forbs had allometries that were less sensitive to climate than per‐
ennials and woody species. Short‐lived and short‐statured plants 
like annual forbs may be more likely to have determinate growth 
patterns than perennials, limiting mechanisms for plastic adjust‐
ments in size‐biomass allometry (e.g. Perrin & Sibly, 1993). Annuals 
are also more likely than perennials to grow over a narrow range of 
conditions that follow from their abiotic thresholds of seed germi‐
nation and rapid growth cycles (Farnsworth, 2007). In our dataset, 
clonal, rhizomatous or stoloniferous species were not represented 

F I G U R E  5   Estimates of total above‐
ground biomass averaged over 40–100 
1 × 1 m quadrats per year per ecosystem 
type for either climate‐sensitive (dark 
grey) or climate‐insensitive (light grey) 
allometry methods for biomass estimation 
in four ecosystem types in (a) spring or 
(b) fall

(a)

(b)



2300  |    Functional Ecology RUDGERS et al.

in sufficient numbers to investigate whether plants with vegetative 
reproduction strategies could adjust size‐biomass allometry more 
than species that lack clonality. However, this could be an interest‐
ing hypothesis for future study. Second, size‐biomass allometries of 
C3 plants trended towards less sensitivity to climate than C4/CAM 
plants. Larger sample sizes to separate C4 and CAM strategies could 
be informative because CAM species use internally stored water 
(Tissue, Yakir, & Nobel, 1991), that should make their growth and 
growth form somewhat independent from short‐term water avail‐
ability. Altogether, our results align with recent meta‐analysis of 
organ‐specific plant allometries, which documented significant dif‐
ferences among annuals versus perennials and herbaceous versus 
woody plants in the patterns of biomass partitioning among roots, 
leaves or reproductive tissues under experimental drought (Eziz et 
al., 2017).

4.3 | Ecological and practical consequences of 
allometric sensitivities to climate

Substantial variation in plant size‐biomass allometry under differ‐
ent abiotic conditions could have diverse ecological consequences. 
For example, altered above‐ground plant tissue density could have 
cascading effects on consumers in resource‐poor environments. 
Plant size‐biomass allometries could affect the amount of resources 
available in a single foraging patch and thereby alter optimal forag‐
ing strategies of consumers, such as small mammals, which shift diet 
dramatically in response to climate in desert ecosystems (Noble et 
al., 2019). Similarly, shifts in biomass per unit cover could influence 
the pace of pathogen transmission among plant leaves and stems, 
affecting disease dynamics. Assuming a sparse versus dense size‐
biomass allometry could alter plants' competitive ability for sunlight 
or soil resources, affecting plant community dynamics. Finally, plant 
architecture has well‐studied effects on nesting and perching sites 
for vertebrates and can also influence how predators capture her‐
bivorous prey (Marquis & Whelan, 1996).

Our findings have an additional practical application for studies 
that use allometry to estimate biomass from non‐destructive mea‐
sures of plant size. As a non‐destructive measure of size, plant cover 
was as good as volume for a majority of forb, grass and shrub spe‐
cies. Cover was adequate for more than three‐fourths of forb and 
grass species, although volume was important for some species. 
Additional work in other ecosystem types would be needed to gen‐
eralize the replacement of cover for volume. However, for drylands, 
our results suggest the extra labour of measuring plant height does 
not increase precision of biomass estimation, with the exception of 
tall shrub species and some dominant grasses.

4.4 | Future directions

Here, we focused on above‐ground size – biomass allometries 
for plants in drylands, and the diversity of sensitivities we ob‐
served across species suggests that similar investigations could 
be useful for other aspects of plant morphology. For example, in 

a large study on plant rooting depths, rooting depth varied with 
mean annual precipitation (Schenk & Jackson, 2002). It could 
be interesting to investigate whether the sensitivity of below‐
ground allometry to climate rivals or exceeds above‐ground 
sensitivities, and whether above‐ and below‐ground allometries 
are most sensitive to different climate variables. We found that 
approximately one‐third of species were most sensitive to each 
climate variable we investigated (precipitation, temperature, or 
drought), but below‐ground allometry may be most sensitive to 
soil moisture, due to the temperature‐buffering effect of soil. 
Additionally, recent work examined biomass partitioning among 
seed traits to characterize plant investment in seed dispersal, 
seed defence and seed endosperm provisioning (Chen & Giladi, 
2018). Understanding the climate sensitivity of seed allometries 
could be useful for predicting whether climate change will alter 
dispersal distances, dispersal patterns or the dynamics of con‐
sumers that depend on the energy in seeds.

5  | CONCLUSIONS

Patterns of plant biomass partitioning are fundamental to esti‐
mates of primary productivity and ecosystem processes, such as 
carbon storage. We demonstrated that allometric relationships 
between above‐ground plant biomass and measures of plant size 
varied considerably with spatiotemporal changes in precipitation, 
temperature and drought and that the sensitivity of allometry to 
climate tracked plant evolutionary history. Our results are impor‐
tant for the practical, functional use of allometry to estimate pri‐
mary production and for understanding the cascading ecological 
consequences of climate‐altered plant morphologies in dryland 
ecosystems.
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